

Blue Wave

Engineering

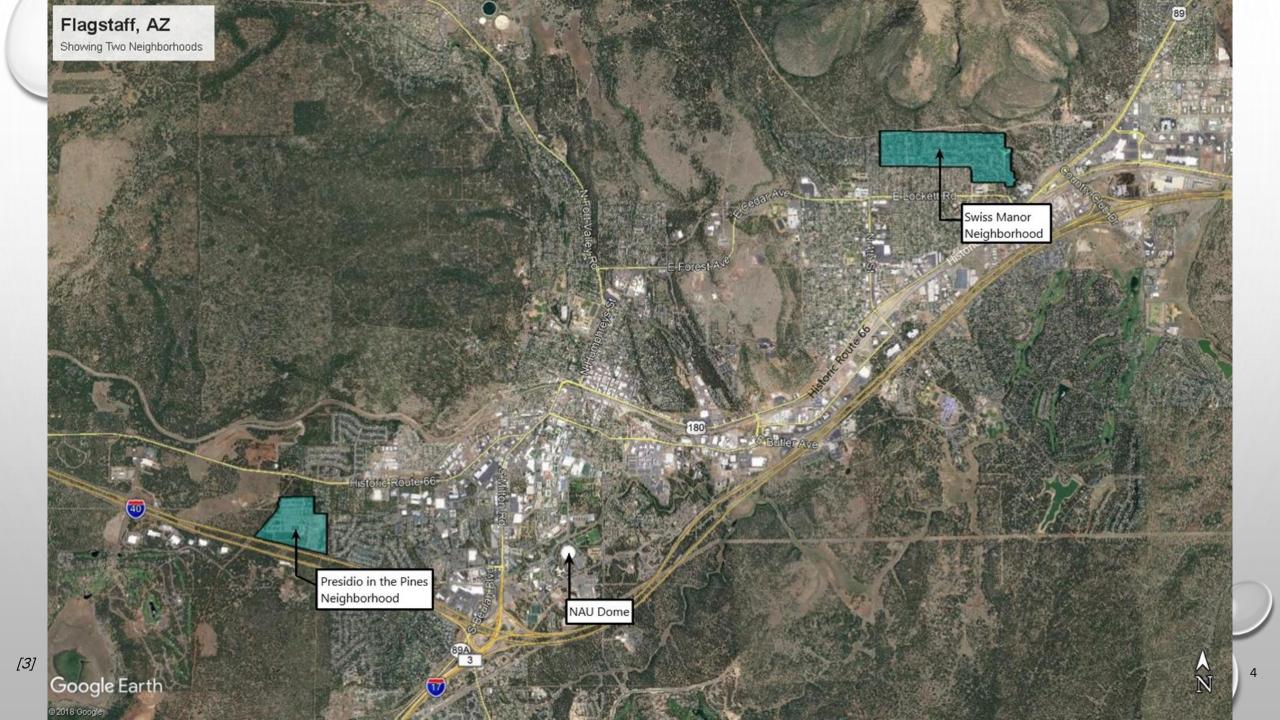
Flagstaff Weighted Curve Numbers CENE 476 Capstone Presentation April 25th, 2019

Grace Garwin, Ethan Crane, Abdullah Alenezi, Chad Murphy

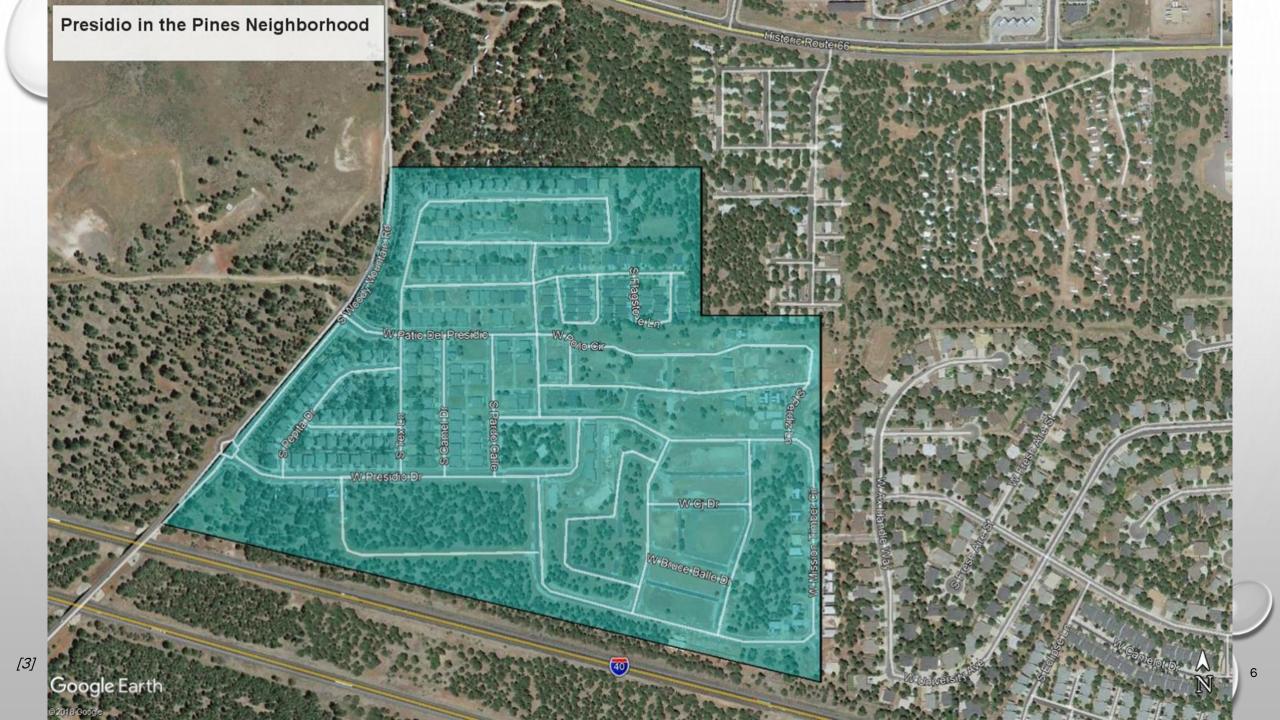
Purpose

- Curve numbers are a coefficient used to estimate runoff volumes from a storm event
- Flagstaff experiences localized flooding during storm events
- Current estimations do not consider
 flows over discontinuous surface types
- Comparison between area-weighted method and micro-basins based on surface type.

Figure 1: Overland Flow [1]



City of Flagstaff Stormwater Division Ed Schenk Jim Janesek



3

Figure 2: City of Flagstaff Badge [2]

Task 1: Site Investigation

• Task 1.1: Field Visit and Preliminary

Assessment

- Task 1.1.1: Topographic Maps
- Task 1.1.2: Aerial Maps
- Task 1.1.3: Precipitation Data
- Task 1.2: Soil Survey

Task 2: Basin Delineation

- Task 2.1: Major Basin
- Task 2.2: Sub-Basins
 - Task 2.2.1: Sub-Basins for Weighted Curve Number
 - Task 2.2.2: Micro-Basins Based on Surface
 Type

Task 3: Runoff Routing

• Task 3.1: Time of Concentration

Path Delineation

• Task 3.2: Time of Concentration

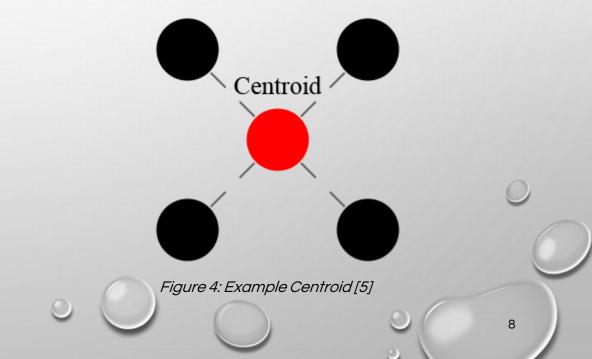



Figure 3: Example Runoff Path [4]

Task 4: Centroid Analysis

Task 5: Curve Numbers

- Task 5.1: Weighted Curve Number Calculation for Sub-Basins
- Task 5.2: Curve Numbers for

Micro-Basins

Land Use	Slope	Slope Hydrologic Class				
	(%)	Α	в	С	D	Length (m)
	< 3	62	72	79	82	
Agricultural	3-8	64	76	84	88	10
land	> 8	70	80	87	90	
	< 3	32	51	72	79	
Pasture	3-8	44	65	77	82	25
	> 8	59	74	83	87	
	< 3	24	54	68	76	
	-					•
Forest	3-8	33	59	73	79	20
	> 8	44	66	78	83	
Urban	Dense	73	83	88	90	5

Figure 5: Curve Number Chart [6]

Task 6: Runoff Volumes

- Task 6.1: Runoff Calculations Using Weighted Curve Numbers
- Task 6.2: Runoff Calculations Using Micro-Basin Curve Numbers

$$I_{a} = 0.2 \text{ S}$$

$$Q = \frac{(P - 0.2 \text{ S})^{2}}{(P + 0.8 \text{ S})}$$

$$S = \frac{1000}{CN} - 10$$

igure 6: SCS Method Runoff Equation [7]

9

Task 7: HEC-HMS Model

- Task 7.1: Data Input
 - Task 7.1.1: Soil Survey Input
 - Task 7.1.2: Runoff Routing
 - Task 7.1.3: Topographic Maps
- Task 7.2: Running HEC-HMS

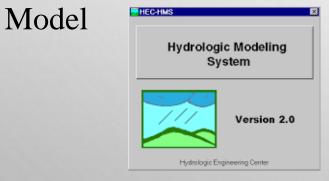


Figure 7: HEC-HMS Badge [8]

Task 8: Bench Model Simulation

- Task 8.1: Creation of Physical Model
- Task 8.2: Physical Model Storm Simulation
- Task 8.3: Generate Hydrographs from Results

10

Task 9: Evaluation of Results

- Task 9.1: Create Hydrographs
 - Task 9.1.1: 2-yr Storm Hydrograph
 - Task 9.1.2: 10-yr Storm Analysis
 - Task 9.1.3: 100-yr Storm Analysis
- Task 9.2: Compare Simulation to Runoff Volume Results
- Task 9.3: Compare HEC-HMS
 Results to Known Storm Events

Task 10: Project Impacts

- Task 10.1: Economic Impacts
- Task 10.2: Social Impacts
- Task 10.3: Environmental Impact

Figure 8: Environmental Impact Representation [9]

Task 11: Project Deliverables

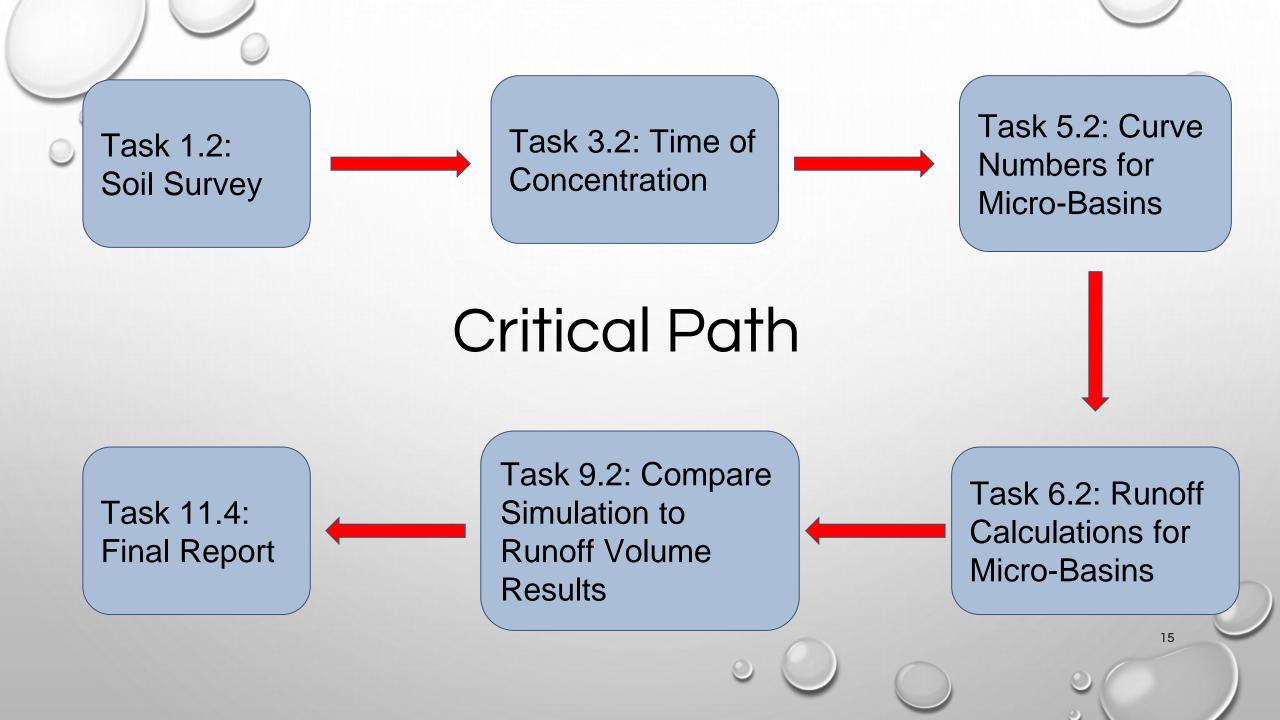
- Task 11.1: 30% Submittal
 - Task 10.1.1: 30% Report
 - Task 10.1.2: 30% Presentation
- Task 11.2: 60% Submittal
 - Task 11.2.1: 60% Report
 - Task 11.2.2: 60% Presentation
- Task 11.3: 90% Submittal
 - Task 11.3.1: 90% Report
 - Task 11.3.2: 90% Website

- Task 11.4: Final Submittal
 - Task 11.4.1: Final Report
 - Task 11.4.2: Final Presentation

12

• Task 11.4.3: Final Website

Task 12: Project Management


- Task 12.1: Meetings
 - Task 12.1.1: Client Meetings
 - Task 12.1.2: Technical Advisor Meetings
 - Task 12.1.3: Grading Instructor Meetings
 - Task 12.1.4: Team Meetings
- Task 12.2: Coordination
- Task 12.3: Schedule Management
- Task 12.4: Resource Management

Exclusions

- Topographic Surveying
- Evaluating Curve Numbers
- Developing Curve Numbers

D	Task Name	Duration	Aug	Sep	Qtr 4, 2019	Oct	Nov		Dec
1	Task 1: Site Investigation	9 days	Aug			Ud	NOV	505	Dec
2	Task 1.1: Field Visit and Prelim Assessment	inary 5 days		8/30					
6	Task 1.2: Soil Survey	4 days		—					
7	Task 2: Basin Delineation	6 days		• 9/9					
8	Task 2.1: Major Basin	2 days							
9	Task 2.2: Sub-Basins	2 days							
12	Task 3: Runoff Routing	12 days		9/12					
13	Task 3.1: Time of Concentration Delineation	Path 5 days							
14	Task 3.2 Time of Concentration	5 days		×					
15	Task 4: Centroid Analysis	5 days			201207				
17	Task 5: Curve Numbers	10 days			9/26				
18	Task 5.1: Weighted Curve Num Calculation for Sub-Basins	ber 4 days							
19	Task 5.2: Curve Numbers for Micro-Basins	10 days							
20	Task 6: Runoff Values	21 days				_			
21	Task 6.1: Runoff Calculations U Weighted Curve Numbers	sing 5 days		*					
22	Task 6.2: Runoff Calculations U Micro-Basin Curve Numbers	sing 15 days			*				
23	Task 7: HEC-HMS Model	16 days		•	9/18				
24	Task 7.1: Data Input	14 days		·					
28	Task 7.2: Running HEC-HMS Mo	odel 2 days		—					
29	Task 8: Bench Model Simulation	9 days				100000			
33	Task 9: Evaluation of Results	33 days				• 10/22			
34	Task 9.1: Create Hydrographs	3 days							
38	Task 9.2: Compare Simulation t Runoff Volume Results	o 3 days							
39	Task 9.3: Compare HEC-HMS Re to Known Storm Events	esults 3 days		×	-				
40	Task 10: Project Impacts	15 days							
41	Task 10.1: Economic Impacts	15 days							
42	Task 10.2: Social Impacts	15 days							
43	Task 10.3: Environmental Impa					V			
44	Task 11: Project Deliverables	78 days							
58	Task 12: Project Management	78 days							1
	Task		Project Summary	Manual Task	Start-only	y E	Deadline	+	
	ect: Capstone GANT Split		Inactive Task	Duration-only	Finish-on	ly 🔳	Progress		
Date:	: Wed 4/24/19 Mileston	e 🔶	Inactive Milestone	Manual Summary Rollu	p External 1	Tasks	Manual Progress		
	Summar	·	Inactive Summary	Manual Summary	External	Milestone 🔷			

Staffing Plan

Tasks	SENG	ENG	EIT	AA	Total
Task 1: Site Investigation	1	8	23	0	32
Task 1.1: Field Visit and					
Preliminary Assessment		7	17		24
Task 1.1.1: Topographic Maps		2	4		6
Task 1.1.2: Aerial Maps		2	5		7
Task 1.1.3: Precipitation Data		3	8		11
Task 1.2: Soil Survey	1	1	6		8
Task 2: Basin Delineation	0	7	21	0	28
Task 2.1: Major Basin		3	3		6
Task 2.2: Sub-Basins		4	18		22
Task 2.2.1: Sub-Basins for					
Weighted Curve Number		1	4		5
Task 2.2.2: Micro-Basins Based on Surface Type		3	14		17
Task 3: Runoff Routing	0	14	13	0	27
Task 3.1: Time of Concentration					
Path Delineation		6	5		11
Task 3.2: Time of Concentration		8	8		16
Task 4: Centroid Analysis	0	2	6		8
		2	6		8

Tasks	SENG	ENG	EIT	AA	Total
Task 5: Weighted Curve Numbers for					
Sub-Basins	2	6	22	0	30
Task 5.1: Weighted Curve Number					
Calculations for Sub-Basins	1	4	18		23
Task 5.2: Curve Numbers for Micro-					
Basins	1	2	4		7
Task 6: Weighted Curve Numbers Sub-	2	11	48		61
Basins Based on Surface Type	2	11	40		01
Task: 6.1: Runoff Calculations Using					
Weighted Curve Numbers	1	3	12		16
Task: 6.2: Runoff Calculations Using					
Micro-Basin Curve Numbers	1	8	36		45
Task 7: Software	1	4	15	0	20
Task 7.1: Data Input		3	11		14
Task 7.1.1: Soil Survey Input		1	3		4
Task 7.1.2: Runoff Routing		1	4		5
Task 7.1.3: Topographic Map		1	4		5
Task 7.2: Running HEC-HMS Model	1	1	4		6
Task 8: Bench Model Simulation	1	10	26	0	37
Task 8.1: Creation of Physical Model		4	10		14
Task 8.2: Physical Model Storm					
Simulation		4	10		14
Task 8.3: Generate Hydrographs from					
Results	1	2	6		9

Staffing Plan

Tasks	SENG	ENG	EIT	AA	Total	Tasks	SENG	ENG	EIT	AA	Total
Task 9: Evaluation of Results	8	19	30	0	57	Task 11.3: 90% Submittal	7	6	39	3	55
Task 9.1: Create Hydrographs		3	6		9	Task 11.3.1: 90% Report	5	4	15	2	26
Task 9.1.1: 2-yr Storm Analysis		1	2		3	Task 11.3.2: 90% Website	2	2	24	1	29
Task 9.1.2: 10-yr Storm Analysis		1	2		3	Task 11.4: Final Submittal	13	15	8	2	38
Task 9.1.3: 100-yr Storm Analysis		1	2		3	Task 11.4.1: Final Report	8	8	1	1	18
Task 9.2: Compare Simulation to Runoff						Task 11.4.2: Final Presentation	4	4		1	9
Volume Results	4	8	12		24	Task 11.4.3: Final Website	1	3	7	1	12
Task 9.3: Compare HEC-HMS Results to Known Storm Events	4	8	12		24	Task 12: Project Management	108	189	0	26	323
Task 10: Project Impacts	6	30	0	0	36	Task 12.1: Meetings	48	184	0	26	258
Task 10.1: Economic Impacts	2	10			12	Task 12.1.1: Client Meetings		8		2	10
Task 10.2: Social Impacts	2	10			12	Task 12.1.2: Technical Advisor					
Task 10.3: Environmental Impacts	2	10			12	Meetings		16		4	20
Task 11: Project Deliverables	30	33	91	11	165	Task 12.1.3: Grading Instructor Meetings		16		4	20
Task 11.1 30% Submittal	5	6	22	3	36	Task 12.1.4: Team Meetings	48	144		16	208
Task 11.1.1: 30% Report	3	4	15	2	24					10	
Task 11.1.2: 30% Presentation	2	2	7	1	12	Task 12.2: Coordination	20	5			25
Task 11.2: 60% Submittal	5	6	22	3	36	Task 12.3: Schedule Management	20				20
Task 11.2.1: 60% Report	3	4	15	2	24	Task 12.4: Resource Management	20				20
Task 11.2.2: 60% Presentation	2	2	7	1	12	Total Hours	159	333	295	37	824

Cost of Engineering Services

Cost Estimate of Engineering Services

			1	
Description	Unit	Quantity	Unit Cost	Cost
SENG	HR	159	\$160	\$25 <i>,</i> 440
ENG	HR	333	\$110	\$36,630
EIT	HR	295	\$60	\$17,700
AA	HR	37	\$50	\$1,850
Bench Model Supplies	LS	1	\$1,000	\$1,000
TOTAL	\$82,620			

References

[1]"Catching Storm Runoff Could Ease Droughts, But It's No Quick Fix," KQED, 17-Mar-2016. [Online]. Available: https://www.kged.org/science/573382/catching-storm-runoff-could-ease-droughts-but-it-wont-come-cheap. [Accessed: 24-Apr-2019].

[2]Government | City of Flagstaff Official Website. [Online]. Available: https://www.flagstaff.az.gov/979/Government. [Accessed: 24-Apr-2019].

[3] "Overview - Google Earth," Google Earth. [Online]. Available: https://www.google.com/earth/. [Accessed: 25-Apr-2019].

- [4]"How Watershed Works", ArcGIS, 24-April-2019. [Online]. Available: http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/how-watershed-works.htm
- [5]Cs.cornell.edu. (2019). CS 1110: Assignment 5. [online] Available at: http://www.cs.cornell.edu/courses/cs1110/2013fa/assignments/assignment5/index.php [Accessed 25 Apr. 2019].
- [6]Research Gate. (2019). [online] Available at: https://www.researchgate.net/figure/Runoff-Curve-Number-CN-after-Monfet-1979-and-drainagelength_tbl1_230819102 [Accessed 25 Apr. 2019].
- [7]SCS Curve Number Method. [Online]. Available: https://engineering.purdue.edu/mapserve/LTHIA7/documentation/scs.htm. [Accessed: 25-Apr-2019].
- 8]"HEC-HMS," *HEC-HMS*. [Online]. Available: https://sites.google.com/a/aquacloud.net/15he02/hydrological-analysis/hec-hms. [Accessed: 25-Apr-2019].
- [9]O.Nieburg, "Whatis chocolate's biggest environmental impact?," confectionerynews.com, 15-Mar-2018. [Online]. Available: https://www.confectionerynews.com/Article/2018/03/15/What-is-chocolate-s-biggest-environmental-impact. [Accessed: 25-Apr-2019].
- [10]E. Creative, "Land Surveying," *Barghausen Consulting Engineers, Inc. -*. [Online]. Available: https://www.barghausen.com/services/land-surveying. [Accessed: 25-Apr-2019].

